Top Drawer Spotlight

Rob Mathias, DNAP, CRNA Vanderbilt University Medical Center

Overview

- Cellular Membrane Electrolyte Gradients
 - Electrolyte Gradients
 - Resting vs Threshold vs Action Potential
- Medications administered during
 - Pre-operative
 - Induction
 - Maintenance
 - Emergence

Electrolyte Gradients

- Positively-charged molecules
 - Sodium (mostly outside the cell)
 - Potassium (mostly inside the cell)
- Negatively-charged molecules
 - Chloride (mostly outside the cell)
 - Inorganic Phosphate (mostly inside the cell)
- Your reports are extracellular numbers!

Electrolyte Gradients

- Extracellular
 - + Sodium 140 mEq/L
 - + Potassium 4 mEq/L
 - ++ Calcium 2.4 mEq/L
 - ++ Magnesium 1.2 mEq/L
 - Chloride 103 mEq/L
 - -- Inorg Phos 4 mEq/L

- Intracellular
 - + Sodium 14 mEq/L
 - + Potassium 140 mEq/L
 - ++ Calcium 0.0001 mEq/L
 - ++ Magnesium 58 mEq/L
 - Chloride 4 mEq/L
 - -- Inorg Phos 75 mEq/L

Your reports are extracellular numbers!

Membrane Potential

- Resting Potential
 - Varies within a cell: typically anywhere from -60 to -90
 - The lower the resting membrane potential, the harder it is for the cell to reach threshold.

- Threshold Potential
 - Consistent within a cell, but varies between cell types.
 - Once threshold is hit,
 Action Potential cannot be stopped.

We can control a cell's action by controlling the cell's ability to reach threshold.

Pre-operative

- Goals during the pre-operative period:
 - Get to know the patient (history and physical exam)
 - We DO NOT sedate the patient before we interview them!
 - Pre-operative procedures (regional block)
 - Then...if needed....we can sedate/relax the patient.

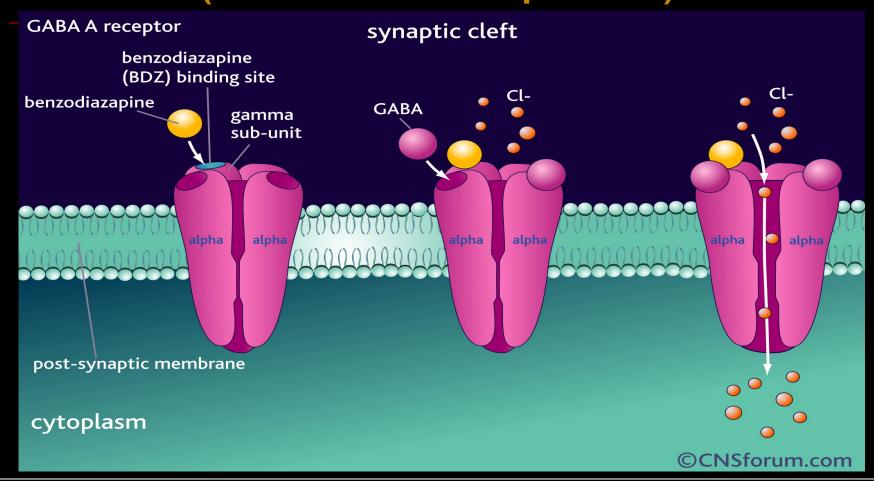
Pre-operative Medications

Benzodiazepines

- Decrease anxiety
- Typically given IV, but may be given IM or orally (kids)
- Examples
 - midazolam (Versed)
 - diazapam (Valium)

Pre-operative Medications (Benzodiazepines)

Before After



Pre-operative Medications (Benzodiazepines)

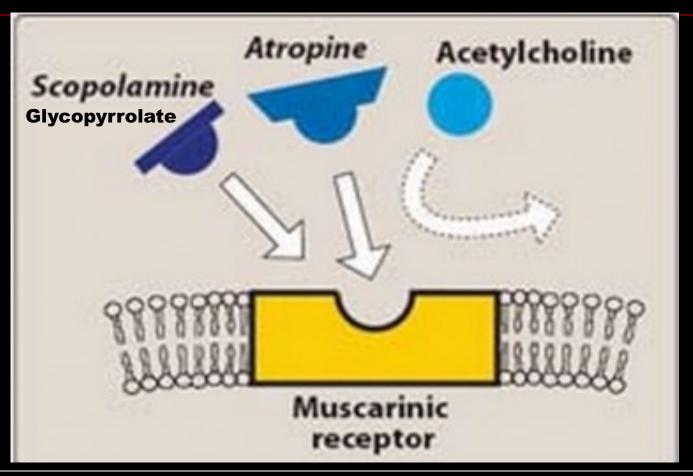
Mechanism of Action

- Enter the bloodstream
- Bind with GABA-A receptors on target cells
- Once the GABA-A receptors are activated, opens up chloride (Cl⁻) channels.
- Chloride (Cl⁻) moves from outside the cell to inside the cell.
- Negative charges (such as Cl⁻) entering a cell is INHIBITORY to that cell!

Pre-operative Medications (Benzodiazepines)

Pre-operative Medications

- glycopyrrolate (Robinul)
 - Decreases saliva
 - Increases heart rate
 - Given IV



Pre-operative Medication (glycopyrrolate)

Mechanism of Action

- Enters the bloodstream
- Binds with muscarinic receptors on target cells
- Acetylcholine (neurotransmitter) also binds with muscarinic receptors to bring about various responses (increased saliva, decreased heart rate, etc.)
- Once bound with muscarinic receptors, glycopyrrolate prevents (blocks) acetylcholine from binding. Thus, blocks acetylcholine's target cell responses (increased saliva, decreased heart rate, etc.)

Pre-operative Medications (glycopyrrolate)

Induction of Anesthesia

- Predictable sequence of medications
 - 1. Medications for loss of consciousness
 - (Ex. propofol, etomidate, ketamine)
 - 2. Medications to provide pain relief from intubation/start of surgery
 - (Ex. fentanyl, sufentanil, remifentanil)
 - 3. Medications to provide skeletal muscle relaxation (AFTER the patient is asleep!)
 - (Ex. succinylcholine, rocuronium, vecuronium)

Induction (propofol)

- Induces a loss of consciousness
- Does NOT provide pain relief
- Causes pain on injection
- Has the potential to significantly decrease the blood pressure, thus we must administer cautiously, or not at all, in hemodynamically unstable patients.

Induction (propofol)

MECHANISM OF ACTION

- Enters the bloodstream
- Binds with GABA receptors
- GABA receptor activation is INHIBITORY in the central

nervous system (CNS)

If the CNS is inhibited...

the person loses consciousness

Induction (etomidate)

- Induces a loss of consciousness.
- Does NOT provide pain relief.
- Unlike propofol, etomidate does NOT decrease the blood pressure (may be a more appropriate induction drug for hemodynamically unstable patients).
- Suppresses corticosteroid synthesis by the adrenal glands.

Induction (etomidate)

MECHANISM OF ACTION

- Enters the bloodstream
- Binds with GABA receptors
- GABA receptor activation is INHIBITORY in the central

nervous system (CNS)

If the CNS is inhibited...

the person loses consciousness

Induction (ketamine)

- Dissociative anesthetic = Patient does not appear to be anesthetized (open eyes, swallowing), but they are not processing information.
- Can be used to induce anesthesia
- Very effective pain reliever
- Hallucinogenic (Special-K: used in recreational settings)

Induction (ketamine)

- Does NOT lower blood pressure May be beneficial for patients who are critically ill.
- Can cause post-operative delirium

Induction (ketamine)

MECHANISM OF ACTION

- Blocks NMDA receptors
- NMDA receptors are excitatory
- Thus...if you BLOCK excitatory receptors, you get a loss of responsiveness
- Additionally, ketamine induces a release of endogenous opioids (endorphins)
- Other mechanisms that are not well understood.

Maintenance

- Definition: The time between placing the patient under anesthesia until the patient is awoken from anesthesia.
- Drugs given during the maintenance phase are used to keep the patient asleep, immobile, comfortable, and most importantly...alive!

Opioids

- Opioid: Any drug that binds with and brings about a response in opioid receptors (mu, kappa, delta).
- Opioid receptors are found in both the CNS (brain & spinal cord) and throughout the body.
- Alters the perception of pain
 - Aware of presence of pain but don't care
- Can produce pain relief, euphoria, respiratory depression, nausea, itching, constipation.

Opioids (fentanyl)

- Synthetic opioid (not derived from poppy)
- Around 100x more potent than morphine
- Can be used for acute and chronic pain
- Additionally can be used in conjunction with midazolam for sedation procedures (endoscopy, port placements, etc.)

Opioids (fentanyl)

MECHANISM OF ACTION

- Strong affinity for the mu opioid receptors
- Mu receptor activation leads to:
 - Pain relief
 - Sedation
 - Reduction in BP (slight)
 - Euphoria
 - RESPIRATORY DEPRESSION!
 - Itching
 - Nausea

Opioids (sufentanil)

- Most potent opioid we use!!!
 - around 500x more potent than morphine
- Typically used for long procedures (> 3 hours) and administered as an infusion.

Opioids (sufentanil)

MECHANISM OF ACTION

- Strong affinity for the mu opioid receptors
- Mu receptor activation leads to:
 - Pain relief
 - Sedation
 - Reduction in BP (slight)
 - Euphoria
 - RESPIRATORY DEPRESSION!
 - Itching
 - Nausea

Opioids (remifentanil)

- Most rapidly acting opioid we use
- Given by bolus and infusion
- Primarily used for stimulating/painful procedures of short duration
- Expensive drug!!!

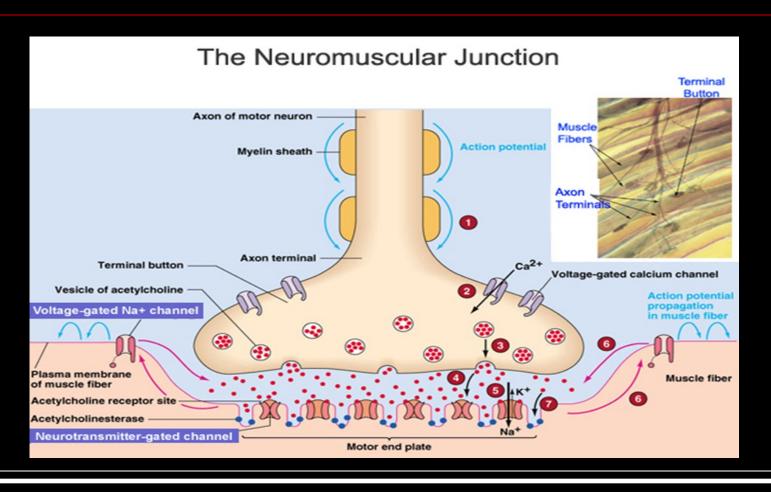
Opioids (remifentanil)

MECHANISM OF ACTION

- Strong affinity for the mu opioid receptors
- Mu receptor activation leads to:
 - Pain relief
 - Sedation
 - Reduction in BP (slight)
 - Euphoria
 - RESPIRATORY DEPRESSION!
 - Itching
 - Nausea

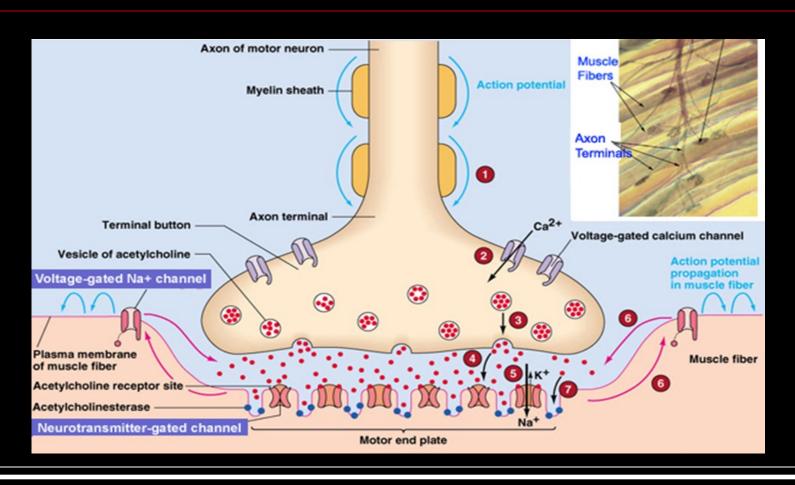
Opioids (hydromorphone)

- Derivative of morphine
- Slightly longer duration of action when compared to fentanyl
- Mechanism of action is the same as the other opioids.


Muscle Relaxants (a.k.a. neuromuscular blocking drugs)

Muscle Relaxants (a.k.a. neuromuscular blocking drugs)

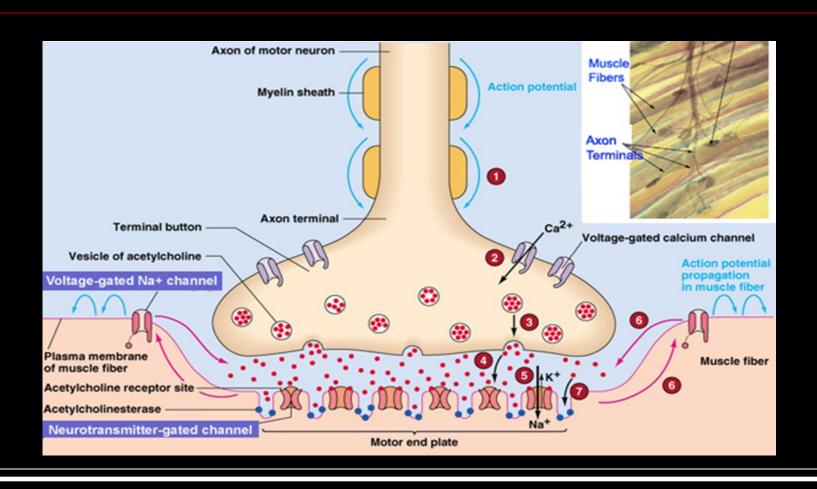
- Muscle relaxation (paralysis) is necessary in certain situations
 - Allow for better operating conditions
 - Prevent unwanted movement during delicate procedures
- Divided into two basic categories
 - Depolarizing (succinylcholine)
 - Non-depolarizing (rocuronium, vecuronium, cisatracurium)


Muscle Relaxants (a.k.a. neuromuscular blocking drugs)

Depolarizing Muscle Relaxants (succinylcholine)

- Useful for short-term paralysis (3 to 5 minutes)
 - Rapid sequence induction
 - Laryngospasm
 - Person needs intubation but not paralysis for the surgery
- Triggering agent for malignant hyperthermia!

Depolarizing Muscle Relaxants (succinylcholine)


Depolarizing Muscle Relaxants (succinylcholine)

- Succinylcholine binds with acetylcholine receptors on motor end plate.
- Post-synaptic membrane depolarizes and the skeletal muscle contracts (fasciculates).
- Succinylcholine is NOT metabolized by acetylcholinesterase, thus the muscles cannot contract again (until succinylcholine diffuses away from the receptors)

Non-depolarizing Muscle Relaxants

- Provide paralysis for an extended period of time (> 20 minutes)
- Examples
 - Rocuronium
 - Vecuronium
 - Cisatracurium
 - Others

Non-depolarizing Muscle Relaxants

Non-depolarizing Muscle Relaxants

- Non-depolarizing muscle relaxants bind with acetylcholine receptors and BLOCK acetylcholine from binding.
- If acetylcholine cannot bind with their receptors on the post-synaptic membrane, muscle contraction cannot occur.
- If muscle contraction cannot occur, the patient cannot move.

Inhaled Anesthetics

- Used as a means to maintain a steady level of anesthesia throughout the procedure.
- Delivered via inhalation
 - Mask
 - LMA
 - Endotracheal tube

Inhaled Anesthetics

ISOFLURANE

- Cheap
- Airway irritant
- Least expensive

DESFLURANE

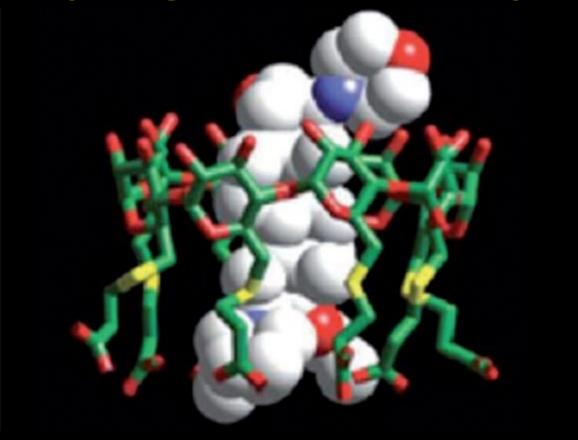
- Requires special vaporizer
- Airway irritant
- Very expensive and worst environmental offender of these three choices
 - Cost can be minimized by using lower fresh gas flows

SEVOFLURANE

- Smells acceptable
 - Inhalation induction
- Expensive

Inhaled Anesthetics

- Full mechanism is unknown
- Multiple theories
- Most plausible: Inhaled anesthetics enhance inhibitory channels and block excitatory channels.


Emergence

- Definition: The period of time between the initiation of waking the patient up and the time at which the patient has regained consciousness.
- Drugs given during the emergence phase are used to reverse muscle paralysis, reduce the incidence of nausea, and keep the patient comfortable.

Emergence (sugammadex)

- Administered to patients to "reverse" muscle paralysis by encapsulating the neuromuscular blocking drug.
- Unlike the older drug, neostigmine, the patient does NOT need any neuromuscular function before reversal (monitored with TOF).
- Additionally, it doesn't have to be administered along with an antimuscarinic drug (e.g. glycopyrrolate)

Emergence (sugammadex)

Emergence (sugammadex)

- Sugammadex encapsulates the aminosteroid NMBDs.
- Vecuronium and rocuronium are encapsulated with high affinity and pancuronium is encapsulated with low affinity.
- When encapsulated, the NMBD cannot bind to its receptor and block neuromuscular function.
- Inability to prevent neuromuscular function = patient not paralyzed anymore.

Emergence (neostigmine)

- Acetylcholine (ACh) acts across the neuromuscular synapse to cause a muscular reaction.
- If ACh molecules were not broken down, our muscles would continue to fire because the junction would continue to be stimulated.
- A naturally occurring enzyme, acetylcholinesterase (AChE) breaks down ACh.
- Neostigmine inhibits the enzyme AChE, allowing ACh to accumulate in the synaptic junctions.

Emergence (neostigmine vs sugammadex)

Neostigmine

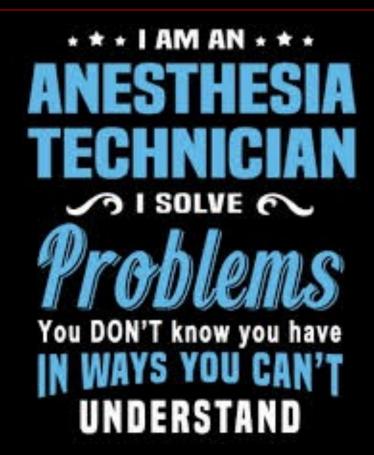
- Neostigmine is fairly inexpensive.
- It increases the quantity of ACh in the synaptic junction, so it works by causing an over-abundance of ACh (not by removing the offending party).
- If Train of Four (TOF) is not at least two, then this medication can be detrimental by actually causing a muscular block!

Emergence (neostigmine vs sugammadex)

- Sugammadex (is awesome)
 - VSugammadex is expensive (patent until January 2026 or later).
 - ▲ It binds with neuromuscular blockers which allows the normal amount of ACh to work as normal.
 - Can invalidate hormonal birth control for up to two months (mostly likely two weeks).
 - If given too quickly, it can cause temporary bradycardia (use with caution in hemodynamically unstable patients).

Emergence (glycopyrrolate)

- Binds with muscarinic receptors to prevent too many muscarinic actions.
- If neostigmine binds AChE, then we have an overabundance of ACh which can lead to too many muscarinic symptoms (too much saliva, bradycardia).
- If we bind SOME of those ACh receptors with glycopyrrolate, then we prevent these excessive muscarinic symptoms (it's all about balance!)


Emergence (ondansetron)

- Administered to decrease the incidence of nausea and vomiting.
- More effective and safer than other antiemetics.
- Typically administered 15 30 minutes before the conclusion of the case.

- Ondansetron blocks 5-HT3 (serotonin) receptors.
- Prevents serotonin release
- Without serotonin, the vomiting reflex is less active.

THANK YOU!

- Everyday each member of our team (anesthesia techs, CRNAs, anesthesiologists, residents, SRNAs) plays a vital role in safely guiding the patients through the dangers of an anesthetic.
- Never forget how IMPORTANT you are to that process!

